On regular local rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining Local and Von Neumann Regular Rings

All rings R considered are commutative and have an identity element. Contessa called R a VNL-ring if a or 1 a has a Von Neumann inverse whenever a 2 R. Sample results: Every prime ideal of a VNL-ring is contained in a unique maximal ideal. Local and Von Neumann regular rings are VNL and if the product of two rings is VNL, then both are Von Neumann regular, or one is Von Neumann regular and the ...

متن کامل

COHEN-MACAULEY AND REGULAR LOCAL RINGS Contents

1. Flat, projective, and free modules 1 2. Review of regular local rings 2 3. Cohen-Macauley rings 2 4. The Koszul complex 3 5. The Koszul resolution detects depth 5 6. The detection of depth by use of Ext 6 7. Global dimension 6 8. Minimal resolutions and global dimension 7 9. Serre’s characterization of regular local rings 8 10. The Auslander-Buchsbaum theorem 10 11. Localizations of regular ...

متن کامل

Unique Factorization in Regular Local Rings.

In this note we prove that every regular local ring of dimension 3 is a unique factorization domain. Nagata4 showed (Proposition 11) that if every regular local ring of dimension 3 is a unique factorization domain, then every regular local ring has unique factorization.* Thus, combining these results we have that every regular local ring is a unique factorization domain. Throughout this note R ...

متن کامل

Commuting $pi$-regular rings

R is called commuting regular ring (resp. semigroup) if for each x,y $in$ R there exists a $in$ R such that xy = yxayx. In this paper, we introduce the concept of commuting $pi$-regular rings (resp. semigroups) and study various properties of them.

متن کامل

On Regular Group Rings

Let G be a multiplicative group, K a commutative ring with unit, and K(G) the group ring of G with respect to K. We say that K(G) is regular if given an x in K(G), there is a y in K(G) such that xyx = x. Using a homological characterization of regular rings which was found independently by M. Harada [2, Theorem 5] and the author, we prove that if G is locally finite, then K(G) is regular if and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1963

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1963-0148696-3